中国“人造太阳”1亿度还不够高

时间: 2019年01月11日 浏览次数: 1514

核聚变其实并不复杂

“‘人造太阳’只是为了便于大众理解的一种比喻说法,它是指科学家利用太阳核反应原理,为人类制造一种能提供能源的机器——人工可控核聚变装置,科学家称它为全超导托卡马克核聚变试验装置。”中国科学院等离子体物理研究所聚变堆总体研究室执行主任高翔研究员对北京科技报记者表示。

中国的“人造太阳”又称为“东方超环”(EAST),是世界上第一个非圆截面全超导托卡马克,也是中国第四代核聚变实验装置。

“人造太阳”并不能像真正的太阳那样给我们光和热。这也是不可能的,否则,地球上的我们离这样的装置这么近,还不被气化了?哪里还有科学家做实验?

其实,核聚变并不复杂,它是指氢原子核反应时放出巨大能量的过程。只要聚拢两个氢同位素原子,用压倒性的力量把它们撞在一起;两个原子核克服了它们之间天然的排斥力实现融合,就能发生核聚变,并释放出巨大的能量。但是在现实中,其发生反应的条件比重原子核发生的核裂变要苛刻得多。

根据科学构想,核聚变主要有冷核聚变与热核反应两种方式。

冷核聚变是指轻原子核在相对低温(甚至常温)下进行地核聚变反应,这种设想将极大的降低反应要求,只要能够在较低温度下让核外电子摆脱原子核的束缚,或者在较高温度下用高强度、高密度磁场阻挡中子或者让中子定向输出,就可以使用更普通更简单的设备产生可控冷核聚变反应,同时也使聚核反应更安全。不过这种情况还只是针对自然界已知存在的热核聚变而提出的一种概念性“假设”。

热核反应是当前很有前途的新能源获取方式,是指参与核反应的轻原子核,如氢(氕)、氘、氚、锂等从热运动获得必要的动能而引起的聚变反应。

热核反应是氢弹爆炸的基础,1967年6月17日中国第一颗氢弹已经爆炸成功,这个过程在瞬间产生大量热能,但目前还无法加以利用。不过科学家们发现,如能使热核反应在一定约束区域内,根据人们的意图有控制地产生与进行,即可实现受控热核反应。这也正是现在中国、美国、日本及欧盟等一些国家和组织正在进行试验研究的重大课题。

1亿度的高温为何没把外壳熔化?

在我国“人造太阳”取得的进展中,其所达到的1亿度高温引起了很多人的兴趣。这样的温度究竟有多高?实在是难以想象。一个可以参考的对象是:太阳核心峰值时温度约为1500万摄氏度,中国“人造太阳”是太阳核心温度的6倍。

其实,在科学家们在最开始尝试核聚变反应时,已经在仔细考虑这个问题。因为超过万度以上的等离子体不能用任何材料所构成的容器约束,使之不飞散,科学家们必须寻求某种途径防止高温等离子体逃逸或飞散。

经过不断的研究,科学家们发现,具有闭合磁力线的环形磁场是一种最可能的选择,因为在这种环境中带电粒子只能沿磁力线运动。这种环形磁场也被科学界形象地称之为磁笼。

从20世纪40年代末起,各国就开发了多种磁笼途径。20世纪70年代开始,苏联科学家发明的托卡马克装置逐渐显示出了独特的优点,并在80年代成为聚变能研究的主流途径。

托卡马克装置又称环流器,是一个由环形封闭磁场组成的磁笼,很像一个中空的面包圈,等离子体在这个面包圈中运动,产生超高温。

高翔表示,等离子体的运动离不开磁力线,它们的温度和能量再高,也只能在磁笼中沿着磁力线旋转运动。他打了一个十分形象的比喻,我们完全可以把高温离子体看作是一个个穿起来的糖葫芦,当中间的串儿变成环形的,不管上面的“糖葫芦”如何运动,温度高到什么地步,依旧只能在串上面运动。在聚变堆研究实验中,只要设计好磁场,超高温的离子就像赛道上跑的车,一定是在磁场这个悬浮的“赛道上”跑,不会和外围的实体材料进行直接的碰撞。

另外,在设计中,尽管磁笼的中心可以达到1亿度以上,但磁笼等离子体的温度也是从中心到外围递减的,其最接近装置的温度已经降到了1万度以下,而外边的装置通过水冷系统可以把温度控制在150度到300度之间。

高翔说,在设计的托卡马克装置中,高能离子被磁笼完全束缚住无法逃身,就是有离子能够逃离,一般也是能量很低的低温离子,已经处于设备能够承受的范围。这也是磁笼中1亿度、甚至是数亿度高温的等离子体不会导致磁笼外边的容器等装置被熔毁的重要原因。

图片1.png

1亿度无法满足核聚变利用要求

有媒体报道,考虑到氘和氚原子核发生聚变反应的条件,若要求氘、氚混合气体中能产生大量核聚变反应,中心电子温度必须达到1亿度以上,因此很多人以为1亿度是氘、氚聚变堆建设的最低要求。

高翔表示,这样的看法并不正确。因为在现在技术水平下,1亿度的温度远不能达到氘、氚能够聚变利用的水平。考虑到氘和氚原子核能产生聚变反应的条件,若要求氘、氚混合气体中能产生大量核聚变反应,温度要求更高;若要达到经济利用,则等离子体中心电子温度必须达到4-5亿度以上。

在这样高的温度下,气体原子中带负电的电子和带正电的原子核完全脱开,可以实现各自的独立运动。这种完全由自由的带电粒子构成的超高温等离子状态中,密度、能量维持时间两个参数也同时达到相应的要求,核聚变才能变成现实。

1亿度的温度是中国“人造太阳”工程的新记录,但中国和国际水平还有较大的差距,目前日本已经可以实现5亿度的高温,美国和欧洲也已经达到2亿度以上的水平。

高翔说,现在中国的“人造太阳”也有自己的优势,譬如与日本的装置相比,中国属于更新一代,虽然目前已经实现的温度比他们要低得多,但是在某些方面更具有优势。

图片2.png

1亿度无法满足核聚变利用要求

有媒体报道,考虑到氘和氚原子核发生聚变反应的条件,若要求氘、氚混合气体中能产生大量核聚变反应,中心电子温度必须达到1亿度以上,因此很多人以为1亿度是氘、氚聚变堆建设的最低要求。

高翔表示,这样的看法并不正确。因为在现在技术水平下,1亿度的温度远不能达到氘、氚能够聚变利用的水平。考虑到氘和氚原子核能产生聚变反应的条件,若要求氘、氚混合气体中能产生大量核聚变反应,温度要求更高;若要达到经济利用,则等离子体中心电子温度必须达到4-5亿度以上。

在这样高的温度下,气体原子中带负电的电子和带正电的原子核完全脱开,可以实现各自的独立运动。这种完全由自由的带电粒子构成的超高温等离子状态中,密度、能量维持时间两个参数也同时达到相应的要求,核聚变才能变成现实。

1亿度的温度是中国“人造太阳”工程的新记录,但中国和国际水平还有较大的差距,目前日本已经可以实现5亿度的高温,美国和欧洲也已经达到2亿度以上的水平。

高翔说,现在中国的“人造太阳”也有自己的优势,譬如与日本的装置相比,中国属于更新一代,虽然目前已经实现的温度比他们要低得多,但是在某些方面更具有优势。

©2025 无锡博物院版权所有    @武汉数文科技技术支持 访问总计:4799211 苏ICP备10207535号